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Figure II.2.  PO and vector representation of rotations. 
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 It must be mentioned at this time that only POs containing x, y, 
or z for one spin and 1 for the other(s) represent magnetization 
components along the corresponding Cartesian axes and have a vector 
representation.  Nevertheless, the rotation applied to all other POs can 
be treated in the same way as above, by considering separately each 
factor in the product. 
 The great advantage over the density matrix formalism is that 
we can apply this approach to systems larger than two spins without 
the considerable increase in the computation volume (for CH3 the 
matrix is 16x16, i.e., it has 256 elements).  In an AMX system (three 
spin 1/2 nuclei): 
                                      90[ ] [yAzzz xzz⎯⎯⎯→ ]
                                        AMX 
 

                                       180[ ] [ ]xMxzz xzz⎯⎯⎯→−  
 
                                                  

180[ ] [xA ]xzz xzz− ⎯⎯⎯→−  
 
 Nonselective pulses affect more than one nucleus in the system. 
For example: 
 
                                          90[ ] [ ]xAXzz yy⎯⎯⎯→
 
                                         90[ ] [ ]xAXxz x⎯⎯⎯→− y

]

 
   
                                         90[ ] [yAMzzz xxz⎯⎯⎯→
 
 For rotations a other than 90o or 180o, nonselective pulses 
affecting n nuclei must be handled in n successive operations.  For 
instance, a nonselective pulse axAX applied to the product operator 
[zy] is treated in the following sequence: 
 
[ ] [ ]cos [ ]sinxAzy zy yyα α α⎯⎯⎯→ −  

2 2[ ]cos [ ]cos sin [ ]sin cos [ ]sinxX zy zz yy yzα α α α α α⎯⎯⎯→ + − − α  
 
These two operations may be performed in any order. 
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7.  TREATMENT OF EVOLUTIONS IN THE  
PRODUCT OPERATOR FORMALISM 

 
 As shown in Appendix F, the evolution of coupled spins is 
conveniently treated in two steps.  Step 1: we consider the system 
noncoupled (chemical shift evolution only).  Step 2: we calculate the 
effect of coupling.  
 
 Step 1 (shift evolution) 
 A shift evolution is equivalent to a rotation about the z axis by 
an angle a = Wt.  Example: 
 

                    shift A[ 1] [ 1]cos [ 1]sinA Ax x t y⎯⎯⎯→ Ω + Ω t  
 
The analogy with the vector representation is shown in Fig. II.3. 
 

  

x    x

y y

shift A
evolution

a

D=[x1] D=[x1] cosa + [y1] sina

  

 
 

Figure II.3.  PO and vector representation of a coupled evolution. 
The angle  a = WAt. 

 
Another example:  
 

                       shift X[ ] [ ]cos [ ]sinX Xzy zy t zx t⎯⎯⎯→ Ω − Ω  
 
The rule of thumb for shift evolution is :  
 

 PO after evolution = (PO before evolution) cosWt + (PO before 
evolution in which x is replaced by y and y by − x for the spin 
affected by evolution) sinWt.  The labels 1 and z are invariant. 
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 If more than one nucleus in the system is subject to shift 
evolution, these evolutions have to be treated as separate steps (the 
order is immaterial). Example: 
 

           shift A[ ] [ ]cos [ ]sinA Axyz xyz t yyz t⎯⎯⎯→ Ω + Ω

M

 
                    AMX 

          
shift M [ ]cos cos [ ]cos sin

[ ]sin cos [ ]sin sin
A M A

A M A M

xyz t t xxz t t
yyz t t yxz t t

⎯⎯⎯→ Ω Ω − Ω Ω
+ Ω Ω − Ω Ω

 (II.22) 

 
The X spin is represented by z in the POs.  Therefore the "shift X" 
does not bring any further change in (II.22). 
 
With the notations  

                (II.23) 
cos cos ' cos "
sin sin ' sin "

A M

A M

t c t c t c
t s t s t s

Ω = Ω = Ω =
Ω = Ω = Ω =

X

X

]

 
the relation (II.22) becomes   
 

      shift A, M, X[ ] '[ ] '[ ] '[ ] '[xyz cc xyz cs xxz sc yyz ss yxz⎯⎯⎯⎯⎯→ − + −  
 
One more example : 
 

shift A[ ] [ ] [ ]xyy c xyy s yyy⎯⎯⎯→ +  
shift M '[ ] '[ ] '[ ] '[ ]cc xyy cs xxy sc yyy ss yxy⎯⎯⎯→ − + −  

shift X ' "[ ] ' "[ ] ' "[ ] ' "[
' "[ ] ' "[ ] ' "[ ] ' "[ ]

cc c xyy cc s xyx cs c xxy cs s xxx]
sc c yyy sc s yyx ss c yxy ss s yxx

⎯⎯⎯→ − − +
+ − − +

 

 
 Step 2 (J coupling evolution) 
 According to the rules presented in Appendix F the coupling 
between two spins is active only when one of the nuclei appears in the 
PO with an x or y while the other nucleus is represented by z or 1. 
Examples : 
 

[xzz] couplings JAM and JAX are active, but JMX is not. −
               AMX 

 

[xyz] couplings JAX and JMX are active, but JAM is not. −
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Another example: 
 

[xyy] no coupling is active − 1
 

For every coupling that is active, the step 2 rule is:  
PO after evolution = (PO before evolution) cospJt + (PO before 
evolution with x replaced by y, y by − x, 1 by z,and z by 1) sinpJt. 
 Examples: 

 [ ] [ ] [ 1]AXJxz C xz S⎯⎯⎯→ + y
t
t

         with         
cos
sin

AX

AX

C J
S J

π
π

=
=

 

 [ ] [ ] [ 1AXJ ]xyz C xyz S yy⎯⎯⎯→ +  
  '[ ] '[ 1] '[ 1] '[ ]MXJ CC xyz CS xx SC yy SS yxz⎯⎯⎯→ − + −

 where        
cos
sin

AX

AX

C J
S J

t
t

π
π

=
=

        
' cos

' sin
AM

AM

C J
S J

t
t

π
π

=
=

 

Combinations of steps 1 and 2 are illustrated by two examples. 
 System AM       [x1]  shift A [ 1] [ 1]c x s y⎯⎯⎯→ +

  (II.24) [ 1] [ ] [ 1] [ ]AMJ cC x cS yz sC y sS xz⎯⎯⎯→ + + −

 System AMX     shift A[ 11] [ 11] [ 11]x c x s y⎯⎯⎯→ +  
  [ 11] [ 1] [ 11] [ 1]AMJ cC x cS yz sC y sS xz⎯⎯⎯→ + + −

  '[ 11] '[ 1 ] '[ 1] '[ ]AXJ cCC x cCS y z cSC yz cSS xzz⎯⎯⎯→ + + −
 '[ 11] '[ 1 ] '[ 1] '[ ]sCC y sCS x z sSC xz sSS yzz+ − − −  (II.25) 
Notations for the last two examples: 

cos cos ' cos
sin sin ' sin

A AM

A AM

c t C J t C J AX

AX

t
s t S J t S J
= Ω = =
= Ω = = t

                                                          

 (II.26) 

 We notice that, in the case of the two spin system, a coupled 
evolution does not split any PO into more than 4 terms.  This is due to 
the fact that when both shifts are active the coupling is not.  

 
1 This seemingly surprising situation prompts an explanation.  Product 
operators as [xx], [xy], [xyy] have nonvanishing elements on the secondary 
diagonal only (which represents zero- and multiple-quantum coherences). 
Referring to Figure I.1 we see that the evolution frequency for the double- 
quantum transition (1→  4) is (A+J/2)+(X-J/2) = X+A. The zero-quantum 
transition frequency (2 3) is X-A. None of them depends on J. →
 



 
 
 
 
 
 
 

The PO formalism     77 

8.  REFOCUSING ROUTINES 
 
 We have seen in the 2DHETCOR section that the 180xC pulse 
caused the decoupling of carbon from proton.  In other words, the 
pulse applied in the middle of the evolution time te, caused the second 
half to compensate for the coupling effect of the first half.  We call 
this a "refocusing routine."  The chemical shift evolution can also be 
refocused if the pulse is applied on the nucleus that evolves.  The 
routine, as shown below, can be handled in the conventional way 
(evolution-pulse-evolution) but the partial results are fairly more 
complicated than the final result.  

                                D/2     D/2  

180

 
 
 We suggest here an efficient calculation shortcut in which the 
entire evolution time, D, can be placed either before or after the pulse 
(of course, this cannot be done in the actual sequence). 
 

 

          

180 180

D D  
 
During the hypothetical delay, D, the following rules apply: 
 a) Only shifts of the nuclei not affected by the 180o pulse are 
taken into account in the evolution D since all other are refocused. 
 b) The coupling between two nuclei is active if both or none 
of them are affected by the 180o pulse. 
 The above rules are valid for systems of m spin 1/2 nuclei, part 
of which may be magnetically equivalent.  The 180o rotation is 
supposed to occur about an axis in the xy plane (no off-resonance 
pulse).  The phase of the pulse does not affect the validity of the rules 
but it must be conserved when, in our calculations, we move the pulse 
from the middle of the interval D to one of its ends.  The rules above 
are demonstrated in Appendix H.   



 
 
 
 
 
 
 
78     Product  Operator Treatment 

 We now compare the conventional calculation with the short-
cut.  For example, we assume that the density matrix at time t(n) is  
 

 

( ) '[ 1] '[1 ]D n p x q x= +  
and it is followed by 
 

/ 2 180 / 2xA∆ − −∆  
 

 In the conventional way, i.e., evolution − pulse − evolution, 
we start with the first evolution, D/2. 
 

( ) ' [ 1] ' [ 1] '[1 ]shift AD n p c x p s y q⎯⎯⎯→ + + x  
' [ 1] ' [ 1] ' '[1 ] ' '[1 ]shift X p c x p s y q c x q s y⎯⎯⎯→ + + +  

' [ 1] ' [ ] ' [ 1] ' [J ]p cC x p cS yz p sC y p sS xz⎯⎯→ + + −  
' ' [1 ] ' ' [ ] ' ' [1 ] ' ' [ ] ( 1)q c C x q c S zy q s C y q s S zx D n+ + + − = +

J

 
 

where 
cos / 2 ' cos / 2 cos / 2A Xc c C π= Ω ∆ = Ω ∆ = ∆  
sin / 2 ' sin / 2 sin / 2A Xs s S Jπ= Ω ∆ = Ω ∆ = ∆  

 

The 180xA pulse affects only the first label in the POs (nucleus A), 
changing the sign of y and z and leaving x unchanged. 
 

180( 1) ' [ 1] ' [ ] ' [ 1] ' [xA ]D n p cC x p cS yz p sC y p sS xz+ ⎯⎯⎯→ − − −  
' ' [1 ] ' ' [ ] ' ' [1 ] ' ' [ ] ( 2)q c C x q c S zy q s C y q s S zx D n+ − + + = +

]

 
 

The second evolution D/2 is calculated as follows 
 

2 2( 2) ' [ 1] ' [ 1] ' [ ] ' [shift AD n p c C x p csC y p c S yz p csS xz+ ⎯⎯⎯→ + − +  
2 2' [ 1] ' [ 1] ' [ ] ' [ ]p scC y p s C x p scS xz p s S yz− + − −  

' ' [1 ] ' ' [ ] ' ' [1 ] ' ' [ ]q c C x q c S zy q s C y q s S zx+ − + +  
2 2' [ 1] ' [ 1] ' [ ] ' [ ]shift X p c C x p csC y p c S yz p csS xz⎯⎯⎯→ + − +  

2 2' [ 1] ' [ 1] ' [ ] ' [ ]p scC y p s C x p scS xz p s S yz− + − −  
2 2' ' [1 ] ' ' ' [1 ] ' ' [ ] ' ' ' [ ]q c C x q c s C y q c S zy q c s S zx+ + − +  

2 2' ' ' [1 ] ' ' [1 ] ' ' ' [ ] ' ' [ ] ( )q s c C y q s C x q s c S zx q s S zy D+ − + + = int  
 

This is an intermediate result, since we still have to consider the effect 
of J-coupling.  Before doing so, we combine the terms containing the  
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same PO. 
 

2 2 2 2( ) '( ) [ 1] '( ) [ ]D p c s C x p c s S yz= + − +int  
2 2'( ' ' ) [1 ] 2 ' ' ' [1 ]q c s C x q c s C y+ − +  
2 2'( ' ' ) [ ] 2 ' ' ' [ ]q c s S zy q c s S zx− − +  

We recognize the expressions for the sine and cosine of twice the 
angle  WXD/2 , i.e., WXD. 

( ) ' [ 1] ' [ ]D p C x p S yz= −int  
'cos ( [1 ] [ ]) 'sin ( [1 ] [ ])X Xq C x S zy q C y S+ Ω ∆ − + Ω ∆ + zx

]

 
Further, we calculate the effect of J. 

2 2( ) ' [ 1] ' [ ] ' [ ] ' [ 1JD p C x p CS yz p SC yz p S x⎯⎯→ + − +int  
2 2'cos ( [1 ] [ ] [ ] [1 ])Xq C x CS zy SC zy S+ Ω ∆ + − + x  
2 2'sin ( [1 ] [ ] [ ] [1 ])Xq C y CS zx SC zx S y+ Ω ∆ − + +  

'[ 1] 'cos [1 ] 'sin [1 ]X Xp x q x q y= + Ω ∆ + Ω ∆  
 We now show that this result can be obtained in just two lines 
by using the shortcut.  Following the rules described above, we first 
apply the 180xA pulse, then an evolution D (where only the shift X is 
considered, while the shift A and the coupling J are ignored). 

180( ) '[ 1] '[1 ]xAD n p x q⎯⎯⎯→ + x  
'[ 1] 'cos [1 ] 'sin [1 ]shift X

X Xp x q x q y⎯⎯⎯→ + Ω ∆ + Ω ∆  
 

The first term, representing the A magnetization, appears unchanged 
because its evolution during the first delay D/2 has been undone 
during the second D/2.  The X magnetization has evolved with the 
frequency WX during the delay D, but in the end it is not affected by the 
J-coupling.  This is because its two components, fast and slow, have 
undergone a change of label in the middle of the delay D.  
 In a system of two nuclei (A and X) if the pulse affects nucleus 
A, only shift X is operative.  Shift A and coupling JAX are refocused 
(see example above).  If the 180o pulse affects both A and X, only the 
coupling is operative.  Both shifts are refocused.  In a system of more 
than two nuclei (e.g., AMX), if the pulse affects all nuclei, only the 
couplings are active.  If the pulse affects all nuclei except one (e.g., 
nucleus A), we see the effect of shift A and of the couplings which do 
not involve A, i.e., JMX.  If the pulse affects only nucleus A, all shifts 
except A and the couplings involving A (JAM , JAX ) are active. 
 


